本书是为本科生参加各级别大学生数学竞赛(非数学专业)编写的辅导教材。本文通过“典型例题与方法进阶”对各类竞赛各种考试中的高频题、富有技巧性的难题进行重点解析,通过课后练习加强学习效果,同时分类整理了历届的全国大学生数学竞赛和江苏省高等数学竞赛的真题,供参加竞赛的实战演练。本书内容详细、讲解透彻、例题丰富多层次,必能助学习高数、准备竞赛或考研的同学一臂之力。本书可供自学或竞赛培训课程使用,同时也可作为学习高等数学(微积分、工科数学分析等)的参考资料或准备考研的复习资料。
前 言
开展大学生数学竞赛, 主要目的是激发大学生学习数学的兴趣与热情, 活跃思想, 促使学生通过准备以及参加竞赛在抽象思维、 逻辑推理、 空间想象、 科学计算以及综合运用数学知识分析和解决问题的能力方面有较大的提升; 同时, 也尝试推动大学数学的教学体系、 教
学内容和方法等方面的改革, 提高教学质量.
中国数学会主办的全国大学生数学竞赛 ( 包括每年十月份的预赛和次年三月份的决赛)已成为我国影响最大、 参赛面最广的大学生基础学科竞赛, 每年吸引了近千所高校、 十余万名学生参加. 该竞赛始于 2009 年, 其前身是 1 988 年开始举办的北京市大学生数学竞赛. 除
了国家级的竞赛, 许多省、 市、 区也都组织了各自的大学生数学竞赛. 江苏省作为科技强省, 组织的 “江苏省普通高校高等数学竞赛”, 是其中影响较大的一个. 其始于 1 991 年, 目前每年一届, 每届参赛高校一百余所, 参赛学生一万余名.
非数学专业的大学生数学竞赛内容均是以高等数学为主 ( 全国大学生数学竞赛预赛和江苏省高等数学竞赛都限于高等数学内容) , 本书就是为参赛学生准备的高等数学竞赛辅导教材. 全书整合重组了高等数学的全部内容体系, 共分为五章: “ 数列极限与数项级数” “ 一
元函数极限、 连续与微分” “积分及其应用与微分方程” “ 空间解析几何与多元函数微分”“多元函数积分及其应用”. 每章均根据内容分为若干节, 每节包括以下四部分:内容总结与精讲———融合梳理高等数学中的关键内容、 核心方法, 包括重要的公式、 定
理及其延伸;
典型例题与方法进阶———280 余道典型例题, 均为各类竞赛各种考试中的高频题、 富有技巧性的难题等, 对其进行重点解析;章节后练习———300 余道练习题, 分为 A 组和 B 组两个层次, 循序渐进, 强化学习效
果, 同时帮助读者衡量已达到的水平和具有的能力;竞赛实战———精选和分类整理了 300 余道历届全国大学生数学竞赛 ( 非数学专业组预、决赛) 和江苏省高等数学竞赛 ( 本科一级) 的真题, 也分为 A 组和 B 组两个层次, 供参加
竞赛的学生实战演练.
相比其他的高等数学辅导教材, 本书强调课本内容的整合与重组, 注重思想和方法的提炼与扩充, 以及知识点的串联与总结, 对高等数学内容进行实质的提升, 以符合大学生数学竞赛的需求, 例题和习题丰富而层次分明, 致力于促进学生高等数学能力的进阶.
本书另一个重要的特色是, 通过扫描页码二维码, 可在线获得与该页内容有关的丰富资料: 本页内容的延伸、 练习题、 竞赛真题的详细解答、 重点难点的语音讲解等. 而且内容会不断更新, 例如逐渐加入新一届竞赛试题等.
本书的例题和习题部分为作者原创, 其余部分则来源于研究生入学考试、 国内外高等数学竞赛以及相关参考书, 在此一一表示致谢!
由于时间仓促, 编者水平有限, 书中的缺点、 错误和疏漏在所难免, 恳请读者批评指正.
编 者
目 录
前 言
第一章 数列极限与数项级数
第一节 数列极限
第二节 数项级数
第二章 一元函数极限、 连续与微分
第一节 函数极限与连续性
第二节 导数与微分的概念与计算
第三节 导数与微分的应用
第四节 微分中值定理及其应用
第三章 积分及其应用与微分方程
第一节 积分的概念与性质
第二节 积分的计算
第三节 积分的应用与傅里叶级数
第四节 简单微分方程及应用
第四章 空间解析几何与多元函数微分
第一节 空间解析几何
第二节 多元函数微分的概念与计算
第三节 多元函数微分的应用
第五章 多元函数积分及其应用
第一节 二重积分及其应用
第二节 三重积分及其应用
第三节 曲线积分及其应用
第四节 曲面积分及其应用
参考文献