定 价:39 元
丛书名:普通高等学校新工科校企共建智能制造相关专业系列教材
- 作者:工课帮 著
- 出版时间:2020/11/1
- ISBN:9787568066921
- 出 版 社:华中科技大学出版社
- 中图法分类:TP242.2
- 页码:240
- 纸张:胶版纸
- 版次:1
- 开本:16开
本书是由一批具有丰富教学经验的高校教师和一批具有丰富实践经验的企业工程师共同编写,全文概念清晰、结构合理、重点突出、难度适中、实例丰富,便于教学和学习。
本书内容包括:机器视觉概述、工业机器人视觉系统软硬件环境搭建、图像采集、图像预处理、图像分割、颜色处理、图像的形态学处理、特征提取、边缘检测、模板匹配、图像分类等,各章附有习题和答案。
本书可作为高校电子信息类、电气类、光电类、自动化类及计算机类等相关专业的教材和教学参考书,也可作为工程技术人员参考资料和感兴趣的读者的自学读物。
在撰写本书过程中,作者结合近年来教学实践及科研的心得体会,并参考大量相关文献,概况地描述了图像处理理论和技术所涉及的各个分支,内容包括:数字图像基础、图像运算、图像增强、图像分割、图像匹配,同时讲述了HALCON图像处理基础、HALCON数据结构、HALCON混合编程等技术和方法。在本书中,尽可能地给出了必要的基本知识及实例,深入浅出,尽量定性地去描述;同时,重点给读者呈现了HALCON的编程技巧及突出HALCON数字图像处理技术的应用实践,并引导读者掌握HALCON的编程方法,培养读者的思维方法,在解决实际问题中能有自己的想法。本书秉承着以知识学习、技能训练形成方法思维。以方法论的系统思维解决视觉应用中的纷繁复杂的场景应用。书中所引用的案例素材均是来源于企业的真实项目,具有较强的实战性;每种视觉应用本书都会通过系统化得思维总结流程框架,让读者思维超越具体的算子代码,形成解决视觉应用的整体思路。有别于目前视觉相关资料偏重算法原理和代码解析。这样能够引导读者形成通用的方法和思路来应对可能的不同视觉应用需求。
武汉金石兴机器人自动化工程有限公司(简称金石兴)是一家专门致力于工程项目与工程教育的高新技术企业,“工课帮”是金石兴旗下的高端工科教育品牌。
自“工课帮”创立以来,教学研发团队一直致力于打造精品课程资源,不断在产、学、研三个层面创新执教理念与教学方针,并集中“工课帮”的优势力量,有针对性地出版了智能制造系列教材二十多种,制作了教学视频数十套,发表了各类技术文章数百篇。
“工课帮”不仅研发智能制造系列教材,还为高校师生提供配套学习资源与服务。
为高校学生提供的配套服务:
(1) 针对高校学生在学习过程中压力大等问题,“工课帮”为高校学生量身打造了“金妞”,“金妞”致力推行快乐学习。高校学生可添加QQ(2360363974)获取相关服务。
(2) 高校学生可用QQ扫描下方的二维码,加入“金妞”QQ群,获取新的学习资源,与“金妞”一起快乐学习。
为工科教师提供的配套服务:
针对高校教学,“工课帮”为智能制造系列教材精心准备了“课件+教案+授课资源+考试库+题库+教学辅助案例”系列教学资源。高校老师可联系大牛老师(QQ:289907659),获取教材配套资源,也可用QQ扫描下方的二维码,进入专为工科教师打造的师资服务平台,获取“工课帮”新教师教学辅助资源。
武汉金石兴机器人自动化工程有限公司(简称金石兴)是一家致力于培养高素质智能制造系统集成开发应用人才科技公司,“工课帮”是金石兴旗下高端教学资源开发品牌。“工课帮”由金石兴公司团结华中科技大学研究团队及国内工业机器人集成行业资深技术人员共同组建。自成立以来,教学研发团队一直致力于打造精品课程资源,为断在产、学、研3个层面创新自己的执教理念与教学方针,并集中“工课帮”的优势力量,针对性地出版了智能制造系列教材30多册,制作教学视频十套,发表各类技术文章数十篇。
工业机器人视觉应用目录
第1章机器视觉概述(1)
1.1什么是机器视觉(2)
1.2机器视觉的工作原理(3)
1.3机器视觉常见软件开发工具(3)
1.4工业机器人视觉系统的应用(4)
1.4.1机器视觉的应用领域(4)
1.4.2机器视觉面临的问题(5)
第2章工业机器人视觉系统软硬件环境搭建(7)
2.1工业机器人视觉系统软件环境搭建(8)
2.1.1Halcon软件简介(8)
2.1.2Halcon软件安装(9)
2.1.3Halcon软件界面介绍(16)
2.1.4Halcon软件常用操作介绍(16)
2.2工业机器人视觉系统硬件环境搭建(18)
2.2.1工业相机(18)
2.2.2图像采集卡(23)
2.2.3镜头(24)
2.2.4光源(26)
2.2.5支架平台(26)
第3章图像采集(27)
3.1图像(28)
3.1.1图像的概念(28)
3.1.2Halcon图像的基本结构(28)
3.2获取非实时图像(29)
3.2.1读取图像文件(29)
3.2.2读取视频文件(30)
3.3获取实时图像(32)
3.3.1Halcon的图像采集步骤(32)
3.3.2使用Halcon接口连接相机(33)
3.3.3外部触发采集图像(34)
3.4实例:采集图像并进行简单的处理(35)
第4章图像预处理(43)
4.1图像的变换与校正(44)
4.1.1齐次坐标(44)
4.1.2二维图像的平移、旋转和缩放(44)
4.1.3投影变换(46)
4.1.4图像的仿射变换(48)
4.2感兴趣区域ROI(51)
4.2.1ROI的意义(51)
4.2.2创建ROI(51)
4.3图像增强(54)
4.3.1直方图均衡(54)
4.3.2增强对比度(55)
4.3.3处理失焦图像(57)
4.4图像平滑与去噪(58)
4.4.1均值滤波(58)
4.4.2中值滤波(59)
4.4.3高斯滤波(60)
4.5实例:图像的平滑处理与增强(61)
第5章图像分割(63)
5.1阈值处理(64)
5.1.1全局阈值(64)
5.1.2基于直方图的自动阈值分割方法(65)
5.1.3自动布局阈值分割方法(65)
5.1.4局部阈值分割方法(67)
5.1.5其他阈值分割方法(70)
5.2区域生长法(71)
5.2.1regiongrowing算子(72)
5.2.2regiongrowing_mean算子(73)
5.3分水岭算法(76)
5.4实例:利用区域生长算法提取图像中特定区域(79)
第6章颜色处理(85)
6.1图像的颜色(86)
6.1.1图像的色彩空间(86)
6.1.2颜色空间的转换(87)
6.2颜色通道的处理(88)
6.2.1图像的通道与访问(88)
6.2.2通道分离与合并(90)
6.2.3处理RGB信息(92)
6.3实例:利用颜色信息提取颜色相近的线段(95)
第7章图像的形态学处理(99)
7.1腐蚀与膨胀(100)
7.1.1腐蚀(100)
7.1.2膨胀(102)
7.2开运算与闭运算(104)
7.2.1开运算(104)
7.2.2闭运算(106)
7.3顶帽运算与底帽运算(109)
7.3.1顶帽运算(109)
7.3.2底帽运算(111)
7.4灰度图像的形态学运算(113)
7.4.1灰度图像与区域的区别(113)
7.4.2灰度图像的形态学运算效果及常用算子(113)
7.5实例:图像目标的分割与计数(117)
第8章特征提取(121)
8.1区域形状特征(122)
8.1.1区域的面积和中心点(122)
8.1.2封闭区域(孔洞)的面积(124)
8.1.3根据特征值选择区域(126)
8.1.4根据特征值创建区域(128)
8.2基于灰度值的特征(130)
8.2.1区域的灰度特征值(130)
8.2.2区域的大、小灰度值(132)
8.2.3灰度的平均值和偏差(132)
8.2.4灰度区域的面积和中心(133)
8.2.5根据灰度特征值选择区域(134)
8.3基于图像纹理的特征(135)
8.3.1灰度共生矩阵(136)
8.3.2灰度共生矩阵的创建与计算(137)
8.4实例:提取图像的纹理特征(138)
第9章边缘检测(141)
9.1像素级边缘提取(142)
9.1.1经典的边缘检测算子(142)
9.1.2sobel_amp算子(143)
9.1.3edges_image算子(145)
9.1.4laplace_of_gauss算子(148)
9.2亚像素级边缘提取(151)
9.2.1edges_sub_pix算子(151)
9.2.2edges_color_sub_pix算子(153)
9.2.3lines_gauss算子(154)
9.3亚轮廓处理(156)
9.3.1轮廓的生成(156)
9.3.2轮廓的处理(156)
9.4实例:对图像实现边缘检测并提取轮廓(159)
第10章模板匹配(165)
10.1模板匹配的种类(166)
10.1.1基于灰度值的模板匹配(166)
10.1.2基于相关性的模板匹配(167)
10.1.3基于形状的模板匹配(167)
10.2图像金字塔(168)
10.3模板图像的创建(169)
10.3.1从参考图像的特定区域中创建模板(169)
10.3.2使用XLD轮廓创建模板(170)
10.4模板匹配的步骤(172)
10.4.1基于灰度值的模板匹配(172)
10.4.2基于相关性的模板匹配(174)
10.4.3基于形状的模板匹配(177)
10.4.4优化匹配速度(180)
10.4.5使用Halcon匹配助手进行匹配(181)
10.5实例:叠层区域的形状匹配(182)
第11章图像分类(187)
11.1分类器(188)
11.1.1分类的基础知识(188)
11.1.2MLP分类器(188)
11.1.3SVM分类器(189)
11.1.4GMM分类器(190)
11.1.5kNN分类器(190)
11.1.6分类器的选择(190)
11.1.7特征和训练样本的选择(191)
11.2特征的分类(191)
11.2.1一般步骤(191)
11.2.2MLP分类器(192)
11.2.3SVM分类器(193)
11.2.4GMM分类器(194)
11.2.5kNN分类器(195)
11.3实例:用MLP分类器对不同的零件进行分类(196)
参考文献(202)